
CongoCC

Basic Concepts
What is CongoCC?

Build Parsers with
CongoCC

The Congo Parser Generator is, at its core, a classic recursive descent parser generator. Now, I
have to assume that many readers do not really understand what that means. For now, let me just
make the following key point: when you use a tool like this to generate your parser, you are really
implementing two separate machines -- the lexer (a.k.a. scanner or tokenizer) and the parser itself.

Of the two, the lexer is the lower level machine. Its job is to break the input into tokens, chunks of
text input that are effectively the smallest pieces of text that have some actual meaning in the
language.

Concretely, consider the following line of Java code:

At the pre-lexical stage, that is just a sequence of characters:

Basic Concepts

 int foo = bar + baz.bat;

 ·

 ·

 ·

 ·

 i

 n

 t

 ·

 f

 o

 o

 ·

 =

 ·

 b

 a

 r

 ·

 =

 ·

 b

 a

The lexer's job is to group those characters into the following:

int (a Java keyword)
foo (a Java identifier)
= (a Java operator)
bar (another identifier)
+ (another operator)
baz (identifier)
. (The dot operator)
bat (identifier)
; (A Java delimiter)

That is what the lexical stage is about, turning a stream of characters into a stream of tokens. As
you surely see, some of the input characters are really just ignorable, most typically whitespace --
for example, the space between the keyword int and the identifier foo after it, or the spaces
immediately before and after the + operator. Those are not even strictly necessary. There is no
semantic difference between foo + bar and foo+bar . The extra spaces would only be for human
readability. By the same token, the line-feed character that terminates the line is simply ignored by
a Java compiler, which would be just as happy (sorry for the anthropomorphism!) if all the Java
code was on a single line. However, code that is not broken into lines would obviously be very
onerous for a human being to work with!

While the lexer is concerned with breaking a stream of characters into tokens, the parser works at
the syntactic level. It takes that stream of tokens that come from the lexer and generates a tree
(an inverted tree data structure) that could be visually represented as follows:

 z

 .

 b

 a

 t

 ;

 ␤

 <FieldDeclaration>

 <PrimitiveType>

 int

 <VariableDeclarator>

 <Identifier>

 foo

 <Operator>

 =

 <AdditiveExpression>

So that is what the parser builds. Or something like that... Again, the problem is partitioned into the
lexical and syntactic side. The lexer takes the stream of characters and turns that into a stream of
tokens. The parser takes that stream of tokens and produces a tree-like data structure as we see
above.

Now, it should be clear that this lexer/parser is invariably part of a larger system, very likely a
compiler or interpreter. A compiler can't do anything with that raw sequence of characters.
Actually, it still can't do much with a stream of tokens either, though we're getting a bit warmer...
However, the above tree-like data structure really is something that a program can do something
with! This is because it is arranged in a way that reflects the logic and structure, a.k.a. semantics,
of the language we are working with.

 <Name>

 <Identifier>

 bar

 <Operator>

 +

 <Name>

 <Identifier>

 baz

 <Operator>

 .

 <Identifier>

 bat

 <Delimiter>

 ;

CongoCC is a more advanced version of the legacy JavaCC tool. The current version is the result of
a huge amount of restructuring and refactoring with the following main goals:

To make the tool much more useful and usable, out of the box
To fix a lot of the design flaws of the legacy implementation
To clean up the code base such that it is now feasible to add features and, more generally
speaking, to turn this into a genuine, active open source development effort.
Those who wish to know the key differences between CongoCC and the legacy JavaCC
project, and in particular, why they would be better off using CongoCC, should start here:
Key Differences between CongoCC and Legacy JavaCC.

If you are wondering how this situation came about, you can read the history

If you don't care about any of that and just want to get started, go here.

If you feel like you would like to get involved with this project, even if only as a vocal end-user (the
squeaky wheel gets the grease!) then please consider joining our Discussion Forum.

Here is our current policy on technical support.

What is CongoCC?

https://wiki.parsers.org/doku.php?id=key_differences
https://wiki.parsers.org/doku.php?id=ancient_history
https://wiki.parsers.org/doku.php?id=start_hacking
https://discuss.congocc.org/
https://wiki.parsers.org/doku.php?id=technical_support

