A Closer Look at Parsers

Parsers in detail

The previous section described parsers at a high-level and described when they may be used. In
this section, we're going to look at parsers in closer look. The concepts discussed here are
foundational to how CongoCC works and is required if you want to work on CongoCC or do
advanced things with it.

Tokenizers and Lexers

Imagine you're writing a simple program to count the number of words in an input english-
language string, like "The quick brown fox jumps over the lazy dogs". Your program would probably
do something like this: count words = len(input string.split()) . This works because the rules in
english are simple: characters in a sentence not separated by a space are part of the same word
and words are separated by a space. In this program, the sentence is split into "tokens" using

input string.split() and the number of tokens is the number of words.

A tokenizer takes as input a text file that follows the rule of some language and breaks the text file
into individual tokens. It's more complicated than just splitting the text file by space because what
constitutes a "token" is different in different languages. Take the following line of code:

string some var = "hello world";

As you can see, there are 5 tokens:

e string
e some var
o |=

e "hello world"

’

Unlike the rules of english, it's not enough to just on whitespace (e.g.: the space in "hello world"
belongs to the token) and characters next to each other can be part of different tokens (e.qg.: the ;
after "hello world" )


https://bookstack.congocc.org/books/congocc-for-newcomers/page/congocc-and-parsers

In our string counting program, we only cared about the number of words. In more advanced
programs like parsers and compilers, we need to understand how the tokens actually relate to each
other and to do that, we need to what the tokens represent. Following the earlier example, it's
more useful if the tokenizer can look at the line of the code and produce the following output:

Token: string , TokenType:
e some_var
o |=

"hello world"

’

Revision #2
Created 9 July 2023 01:30:26 by Ali Razeen
Updated 9 July 2023 05:32:59 by Ali Razeen



