
CongoCC a Java program and its main functionality is a "parser-generator". That is, CongoCC
generates "parsers". A parser is a program that takes in as input a text file, parses the text file, and
— in typical usage — generates a data structure that represents the structure of the text file. The
parsers generated by CongoCC can be executed separately, without any dependencies on
CongoCC.

Think about a simple "hello world" Java program, one that looks like the following (from
https://introcs.cs.princeton.edu/java/11hello/HelloWorld.java.html):

CongoCC and Parsers

What is CongoCC

What are parsers?

/**

 * Compilation: javac HelloWorld.java

 * Execution: java HelloWorld

 *

 * Prints "Hello, World". By tradition, this is everyone's first program.

 *

 * % java HelloWorld

 * Hello, World

 *

 * These 17 lines of text are comments. They are not part of the program;

 * they serve to remind us about its properties. The first two lines tell

 * us what to type to compile and test the program. The next line describes

 * the purpose of the program. The next few lines give a sample execution

 * of the program and the resulting output. We will always include such

 * lines in our programs and encourage you to do the same.

 *

 **/

public class HelloWorld {

It is easy enough to compile and run this:

The Java compiler takes in the HelloWorld.java file and produces a compiled HelloWorld.class file,
which we can run using the Java program. Somewhere early in the compilation process, the
compiler has to be able to understand the structure of the Java source file (in this example,
HelloWorld.java). It needs this structure to know what to compile. The above source file has the
following structure:

1. There is a comment block at the top.
2. There is a class named HelloWorld .
3. The class named HelloWorld has a single method named main .
4. The method main in the class " HelloWorld is of type public static void and takes in one

argument called args . The argument is of type String[] .
5. The method main in the class HelloWorld has a comment and it calls the method

System.out.println with the argument "Hello, World" .

The part of the compiler that is responsible for parsing the input source file and producing a
structured representation of the source file is called the "parser". This structured representation is
called a "Syntax Tree", "Abstract Syntax Tree", or "Concrete Syntax Tree". For now, it doesn't
matter too much what we call them. Generally speaking, parsers are language-specific. A single
parser only understands the rules of a single language. For example, the parser in the Java
compiler will only understand the Java language and will not understand Python, C++, or Rust.

CongoCC generates parsers given an input "grammar". A grammar (sometimes called "formal
grammar") describes the rules of a language. For example, the Java programming language
grammar has rules that look like these:

 public static void main(String[] args) {

 // Prints "Hello, World" in the terminal window.

 System.out.println("Hello, World");

 }

}

$ javac HelloWorld.java

$ java HelloWorld

Hello, World

What does CongoCC do?

ClassOrInterfaceDeclaration:

 {Modifier} (ClassDeclaration | InterfaceDeclaration)

https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html

These rules describe how a programmar will declare classes within a Java source file. In
programming languages, a grammar is necessary because it captures the precise syntactic rules of
the language. For example, in the above rules, under NormalClassDeclaration , we're told that when
defining a regular class in Java, we must use the class keyword (e.g.: public class HelloWorld).

CongoCC has a flexible format with which you can express the grammar of programming
languages such as C#, Python, and Java (or even your own constructed language!). Once you
express the grammar in CongoCC's format, you can pass it to CongoCC to generate a parser that
can parse text files following those rules.

As described above, the parsers generated by CongoCC are programs themselves. Note however
that CongoCC does not produce a compiled parser program. Instead, CongoCC produces the source
code of a parser program, which can then be independently compiled and used. As of writing,
CongoCC is powerful enough to generate a parser source code in C#, Python, or Java. In other
words, you can use CongoCC to generate a Python parser program that is capable of parsing C#
source files! Support for more languages in CongoCC is planned.

ClassDeclaration:

 NormalClassDeclaration

 EnumDeclaration

InterfaceDeclaration:

 NormalInterfaceDeclaration

 AnnotationTypeDeclaration

NormalClassDeclaration:

 class Identifier [TypeParameters]

 [extends Type] [implements TypeList] ClassBody

EnumDeclaration:

 enum Identifier [implements TypeList] EnumBody

NormalInterfaceDeclaration:

 interface Identifier [TypeParameters] [extends TypeList] InterfaceBody

AnnotationTypeDeclaration:

 @ interface Identifier AnnotationTypeBody

CongoCC's Parser programs

Parsers solve a very specific problem: capturing the structure of a text file according to some rules.
Any time you need such structure, you need a parser. The need for parsers is immediate when you
look at problems within the domain of programming languages:

If you are writing a compiler, you need a parser.
If you are writing a tool that verifies the source code written by people for various
properties, you need a parser. For example, the Python linting tool Ruff needs a parser
(https://github.com/astral-sh/ruff/tree/main/crates/ruff_python_ast/src)
If you are developing an IDE like PyCharm, and you want to provide a functionality where
users can rename a function foo to bar and have the rest of Python project be
automatically updated so that all previous calls to foo() are renamed to bar() , you need
a parser.

But let's say you're never going to do anything with programming languages. Even so, parsers can
be useful! Imagine you're writing a system for businesses and you want to provide them with a way
of expressing different kinds of business rules, such as: "if my current stock of printing paper drops
below 10 units, automatically order more from supplier A, B, or C, after taking into consideration
my budget, the prices from the suppliers, and their shipping speed."

In such instances, you need some kind of a DSL (Domain Specific Language). It could even be some
custom JSON-based format, e.g.:

When the user of your system provides you with some text written in your custom DSL, you will
need to reason about it so that your system can do the appropriate things.

Your first option is to write adhoc logic in your program:

When would I use a parser?

{

	"if": {

		"ItemType": "PaperStock",

		"ConditionType": "LessThanEqual",

		"ConditionValue": 10

	},

	"then": {

 "DoSomethingHere".

	}

}

json = <input json from user>

condition_to_check = None

then_clause = None

https://github.com/astral-sh/ruff

As you can see, this is very error prone and time consuming. Each time you add new features your
DSL, you will need to do a lot of work to maintain this adhoc code.

The second option is to make use of parsers:

With a parser, you have cleaner code because you no longer need to parse anything yourself and
you don't have to deal with all the error cases. You can instead focus on your business logic. With
parsers, you have another two options: either write the parser yourself or use CongoCC. If you want
to spend more time actually working on your business logic, the second option is the correct option
:) You can express your DSL rules in the CongoCC format, generate a parser, and use the parser in
your system without needing CongoCC again until the next time you change your DSL rules.

for stanza, attributes in json.items():

 if stanza == "if":

 item_type = attributes.get("ItemType")

 condition_type = attributes.get("ConditionType")

 condition_value = attributes.get("ConditionValue")

 if item_type is None or condition_type is None or condition_value is None:

 raise RuntimeError("The rules are not well-formed. Missing either ItemType,

ConditionType, or ConditionValue.")

 condition_to_check = (item_type, condition_type, condition_value)

 elif stanza == "then":

 then_clause = produce_then_clause_from_attributes(attributes)

if condition_to_check is not None:

 if then_clause is None:

 raise RuntimeError("The if-condition is malformed. A "then" clause is not provided")

 if run_condition(condition_to_check) is True:

 then_clause.execute()

json = <input json from user>

parsed_tree, error_message = parse_tree(json)

if parsed_tree is None:

 raise RuntimeError(f"The specified business rules are not well-formed. Encountered the

following errors: " + error_message)

for node in parsed_tree:

 if node.type == NodeType.IF:

 if run_condition(node.condition) is True:

 execute(node.then_child_node)

Revision #5
Created 8 July 2023 14:32:45 by Ali Razeen
Updated 9 July 2023 01:30:04 by Ali Razeen

